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Abstract—A shared autonomy based assistive system which

uses mouth tracking and path navigation to deliver water to

the mobility impaired has been implemented in this project.

The end goal of this project is to automate the water delivery

task for the mobility-impaired population. We implemented the

mouth tracking algorithm and the path navigation algorithm

on commercial robot STRETCH RE1. Finally, we evaluated the

implementation of these two algorithms and demonstrated the

shared autonomy based system is robust in performing the water

delivery task.

Index Terms—assistive drinking; computer vision; navigation;

human robot interaction

I. INTRODUCTION

The task of providing feeding and drinking assistance to the
mobility impaired is arduous. According to the data from the
US census in 2014, The total number of people having severe
disabilities is 95 million [1]. Of which there are around 19
million people who need assistance with Activities in Daily
Living (ADLs). In this population, nearly 5 million people
have difficulties in drinking and they need assistance from a
caregiver.

Mobility limitations can occur due to different causes such
as cerebral palsy, amputations, and spinal cord injuries [2].
The severity of the mobility limitation varies from individual
to individual. People with severe disabilities need assistance
to do basic ADLs. One of the most important basic ADLs is
eating and drinking, aiding patients to participate in activities
as much as they can is essential for their mental health and
helps them build self-esteem [3]. Quadriplegic is a form of
paralysis caused by injury in the cervical spine. Patients with
quadriplegia tend to lose the ability to control the torso and
limbs [4].

People with these physical limitations commonly experience
dehydration [5], because they cannot drink on their own and
need assistance from caregivers . Drinking enough water is
essential for patients because they need water to maintain body
temperature and avoid constipation. Their skin conditions,
metabolism, and kidney functions can get worse if they do
not get enough water. Thus, it is a very challenging task for
caregivers to provide drinking assistance to patients i.e 2-3
liters per day. It can take a caregiver up to 5 minutes for a hot
drink per serving, and they have to repeat this 7-8 times per
day[6].

Drinking and feeding assistance tasks for patients are mostly
provided by human caregivers today. These daily routine
activities can be fulfilled by assistive devices or robots, thus
helping both patients and caregivers who get involved in the
task. Having support systems that work mostly autonomously
will encourage independence [7] and reduce the workload
for caregivers. However, the device will not be acceptable
and successful, if it requires more effort and time than the
caregivers themselves performing the assistive tasks.

Assistive robots are the robots that were developed to help
caregivers to provide help to users who have difficulties in
performing ADLs [7]. Drinking assistance robots play an
important role in assistive robotic research helping caregivers
address the dehydration problem in patients. Many types of
drinking assistance robots were built in the past decade to
help solve the dehydration problem. The most common type
of drinking assistance robot is the robot arm with the base
mounted to the wheelchair or tabletop with an EEG controller
or face recognition for the user interface. The drawbacks of
using this kind of device are that it cannot move to different
positions and EEG controllers require high mental effort to
control the movement of the robotic effectors to a target
position in 3-dimensional space.

The fixed base robots restrict the robot from providing water
to the intended people. Whereas mobile base robots will enable
users to move the robot from one place to another, such as
from the kitchen area to the bedroom. It would be highly
beneficial for caregivers especially when they are away from
the people to whom they provide assistance.

The drinking assistance provided by many robots involves
the delivery of water with a cup directly to a person’s mouth.
It would be beneficial for patients who have lost mouth muscle
control because of which they cannot use a straw [9]. This task
requires high robust control of the end effector of the robot.

In our research, we have developed a system that involves
the Stretch robot to provide drinking assistance. The Stretch
robot is a mobile base robot, thus users can move the robot
to provide water at different locations. The stretch receives
the destination of a person as an input. Then, it drives to the
provided target position and provides water to the mobility
impaired persons. The robot’s arm has a cup with a straw,
which is utilized by it to provide fluids.



Fully autonomous systems for drinking assistance are ex-
tremely difficult to develop, and almost any system will defi-
nitely require some inputs from humans to function correctly.
Thus, we have aimed to implement a shared autonomy-based
system, which involves sharing of responsibilities between the
caregiver, care receiver, and the robot. From the caregiver’s
end, they first turn on the robot and set it up. Then, a cup
filled with water with a straw in it is given to the gripper
of the Stretch. After preparing the robot for water delivery,
the caregiver provides the target position to the robot via the
RVIZ interface. The robot will now move to the target position
after receiving the command and autonomously deliver water
to the mobility impaired person.The user interface of RVIZ is
very simple, thus, the caregivers can quickly learn to use it.
This interface also helps caregivers to deliver water to mobility
impaired persons even when they are far away from the house.
Our novel autonomous mobile base robot providing assistance
to people in drinking can fill the research gap and reduces the
problem of dehydration in mobility impaired.

II. RELATED WORK

This paper investigates previous studies related to the assis-
tive drinking tasks in three main fields.These three fields are
assistive drinking robots, visual sensing systems for mouth
detection, and navigation systems.

A. Assistive drinking robots
There are several robotic arms developed in the past to

address dehydration problem in people. These include two
main types of robotic arms based on their functionality,
which are the wheelchair-based robots and the workstation-
type robots. The Wheelchair mounted robot arms enable users
to manually control the robot arm movement by using the
wheelchair controller, to interact with the surrounding objects
and the environment. On the other hand, the workstation-type
robot is a fixed base robot intended to do a specific task at the
location where it has been installed.

1) Wheelchair Mounted Robot Arms (WMRA) - Manual
control : The initial versions of wheelchair-mounted robot
arms include the Manus robot arm and Raptor robot arm which
were developed in 2000. JACO robot is the next version of
WMRA introduced in 2010. The JACO has been very popular
since its inception.

Manus robot arm is a wheelchair-mounted robot manipula-
tor developed by Exact Dynamics and commercialized in the
Netherlands [8]. It has an arm attached to wheelchair which
has six degrees of freedom. It can grasp objects with a weight
up to 2.2kg and can perform drinking assistance to people.
The rotating wrist gripper with 2 fingers can grasp the cup,
and bring it close to the person’s mouth using the turn-on and
turn-off commands which control the wrist rotation for water
delivery[8].

Raptor is the first FDA-approved rehabilitative robot [8]
developed by Phybotics (Applied Resources corporation) [21].
Raptor is another wheelchair-mounted robot arm with the
Torque Transmission gearbox mechanism to provide high

torque strength with lightweight objects[22]. The robot can
be manually controlled by using the simple controller in the
wheelchair. The robot gripper has two fingers, allowing users
to grasp various objects. Although it is mostly similar to
the Manus in terms of functionality, it differs in its unique
mechanical design which enables the user to pick up the
objects from the ground.

JACO robot is the next version of WMRA introduced in
2010 by Kinova and commercialized in 25 countries[21].The
JACO has been very popular since its inception, as it is
mounted on an electronic wheelchair. The JACO has six DOF
motions with Kinova’s gripper that is attached to the rotational
actuator of the robot arm. There are two types of Kinova’s
gripper that users can select, which are the two finger gripper
and three finger gripper. The two finger gripper allows the
user to pinch a small object, while the three fingers gripper
has a stronger grasp, enabling the user to grasp the bigger
objects[21]. The robot controller is the Cartesian controller
that enables the user to manually control the basic movements
of the robot end-effector including three translation motions,
three rotational motions, and open /close operations[21]. For
the drinking assistance task, the Jaco robot has a drinking
mode algorithm that shifts the center of rotation of the gripper
in height and radius to set the bottle close to the mouth. Later
the wrist is rotated to deliver water to a person[21]. However,
most users prefer drinking through the straw rather than from
a cup directly.

Fig. 1. JACO mounted on a wheelchair

Controlling these robots to perform drinking assistance is
a complex and delicate task. It requires accurate controlling
skills, and requires a lot of time, and effort from users to
accomplish this task [21]. Thus, several studies regarding
autonomous drinking were developed to resolve this problem.

2) Workstation-type robots - Autonomous drinking assis-
tance feature: In this section we have studied three dif-
ferent work station type robots, which relatively are more
autonomous than the wheel chair mounted robots described



earlier. All of them display autonomy in different tasks, which
are responsible for their unique nature.

In 2006, Neural signals controlled robotic arms were pro-
posed by Hochberg et al [23] In this work, people with
tetraplegia utilized a neural interface system to move and click
a computer cursor. These movements in turn triggered phys-
ical movements in the robotic arms. Thus, the robotic arms
performed grasping and reaching tasks, helping participants
to drink coffee from a bottle.

In 2015, Schroer et al. developed the Brain-Machine Inter-
face (BMI) on the Kuka omniRob platform with the Schunk
three fingers gripper [24]. The robot uses the Kinect sensor and
the external RGB-D camera to measure the position of the cup
and the location of the mouth of the user in the local coordi-
nation frame. The robot then receives electroencephalography
(EEG) signal from the user’s brain, with which it determines
when to deliver water. In 2021, Try et al developed the
drinking assistance systems using Jaco II robot arms, a three
fingers Kinova gripper with the camera, BME 680 sensor,
and a Tof sensor attached to the gripper [25]. This system
involves a cup with Tacterion Pylon medium sensor which
can detect when the cup touches the user’s lip. Thus this
sensor acts as a vital component which adjusts the cup to
deliver water to people. The movements of the end effector
and its speed are controlled by the user through a contact
which can be measured by changes in capacitive and resistive
values received as an input.

Fig. 2. Drinking assistance robot developed by Schroer

B. Visual sensing systems for Mouth Detection

Mouth detection is a vital part of our solution. The higher
the accuracy in detecting the mouth of the person, the higher
will be the success rate of our robot in providing water
to that person. Thus, we have studied several works from
the past which have been significant milestones in mouth
detection. One such work is by Jones and Viola [10][11]. Their
VJ framework for real-time face detection involved applying
Haar-like features in a cascaded Adaboost classifier. Though
this approach has given good and acceptable performance
compared to prior works, there are significant drawbacks to

their approach. First of all, the feature size in the 24x24 de-
tection window is 160,000 which is relatively large. Moreover,
the VJ framework was not effective enough to handle the non-
frontal faces.

The issue of large feature size has later been a challenging
research aspect. The methods like NPD[12] SURF[13] and
ACF [14] have been proposed to address this issue. The
approach by Pham and Cham in fast training and selection
of Haar features with help of statistics boosting based face
detection helped to significantly reduce computational ex-
penses.[15] The method presented by them to train a weak
classifier by using statistics from weighted input data de-
creased training time from minutes to seconds and helped to
achieve good accuracy. Another approach by Charles, Jianxin,
Jie, Matthew, and James has produced the detector which
is significantly faster standard VJ method.[16] They have
achieved this by recycling the outputs of the early stages of
the training phase along with a retracing method that inserted
early rejection points in cascades. This helped in increasing
the overall accuracy and the performance of the face feature
detector.

The popular Dlib library for face feature detection wherein
the SVM classifier was used has also been the main driver for
our work.[17] This library is an open-source library intended
to be used for real-time problems and for research as well.
It has been written in C++ language. This library consists
of several machine learning tools which can be utilized for
various different purposes. Among these tools, one such tool
that particularly aligns with our research is the facial landmark
detector. This is an SVM-based detector, which uses 68
coordinates to detect and represent a face in an image, as
shown in Figure 2. A modified version of this concept has
been used by us for mouth detection in our project which
would detect the mouth of a person in the live video feed.

Fig. 3. Representation of Face by SVM classifier in DLib

Other facial feature detection methods include using Convo-
lutional Neural networks and variations of them. For example,
an integration of ConvNet and 3D face model in an end-
to-end discriminative learning framework has been presented



by Li to detect faces in the wild[18]. Another approach of
applying faster RCNN for face detection has achieved very
good accuracy and performance over regular CNN.[19]. Based
on this work the authors of [20] have moved a step further by
proposing Region Proposal network along with Fast RCNN for
face detection. They have used WIDER FACE dataset to train
the model and generate hard negatives. The resulting model
was further trained on the FDDB dataset. They have also fine
tuned the model by applying multi-scale training process and
feature concatenation strategy to boost its performance. This
approach has been recognised as one of the best published
approaches for real-time face detection.

C. Navigation system

The navigation system is necessary for our robot to move
from one location to other. The implementation of the nav-
igation system starts with the creation of a map by the
mobile robot with the help of sensors like Lidar, camera,
and lasers. The procedure is facilitated by SLAM techniques
which help the robot to create a map while localizing itself.
There are several SLAM techniques proposed in the past like
the Cartographer, Gmapping, HectorSLAM, TinySLAM, and
VinySLAM. Kohlbrecher’s work on Hector SLAM has been
used to assist a rescue robot while navigating to different
places to perform various rescue actions[26]. The ROS (Robot
Operating System) has been used as a platform to generate a
highly accurate metric based map for exploration of unseen
and uneven environments, highly essential for a rescue robot.
Thus, the robot could provide better rescue facilities.

The gmapping is another popular and most widely used
algorithm. One application of this algorithm to a mobile robot
is discussed in [27]. The robot in this paper uses a Hokuyo
Laser Range Finder sensor and netbook for indoor mapping.
The Rao-Blackwellized Particle Filter has been used to collect
data from the sensors which is combined with the data of the
pose of the robot to create a 2D grid map. This map is further
used by the robot for navigating to a given destination in an
indoor environment.

Improving over gmapping, Li et al proposed the usage of
FastSLAM along with the Jacobian Neural network.[28]. The
authors have used the third-degree Cubature rule for Gaussian
Weighted integral to estimate the SLAM state accurately. The
algorithm was simulated using the Ackermann model. This
approach suffered from a limitation which is accumulating
errors with incorrect odometry model.

From the previous works by others, we can conclude that
each SLAM algorithm has its own benefits and limitations.
However, it is very difficult to completely overcome all the
limitations of the SLAM techniques, we can definitely fine
tune different parameters to mask the limitations to some
extent. Few such parameters and their effect on Gmapping
technique are discussed in [27]. These options have guided us
to build a robust navigation system for our approach.

III. METHOD

The system that we have developed to provide assistive
drinking consists of Stretch robot. It has an arm that can hold
a cup filled with water as shown in Fig.1.

Fig. 4. Stretch robot with the cup and straw at the end effector. The robot has
three main components including (i) The depth camera. (ii) The robot gripper
on adjustable robot arm (iii) The 9 DOF IMU sensor in the robot base.

There are mainly two important steps involved in delivery
of water by the robot, which are mentioned below.

A. Navigation System
In the navigation system, we have provided the robot with

a destination position that is close to the person who needs to
be provided assistance with drinking. After which the robot,
can autonomously drive itself to the destination provided. To
achieve this, we initially created a rough map of the room
where the robot needs to navigate autonomously using Gmap-
ping SLAM technique. This map is created by letting the robot
to move around the environment where it needs to provide
assistance. The robot utilizes the camera mounted on it to map
its environment and different objects in its environment. The

Fig. 5. Human drawn map of the Indoor environment



robot’s view of the environment can be viewed using a tool
called RVIZ which is provided by the ROS(Robot Operating
System). This tool helps to visualise the robot’s perspective of
the environment along with safety distances associated with
the different objects in the environment. The safety distances
are set so that the robot will not get very close to any object
in the environment and also prevents it from colliding with
any object. The map of the environment where we have used
the robot is shown in Figure 6.

Fig. 6. Map that Robot created by itself in RViz Tool

The initial map helps the robot to understand its environ-
ment and also helps the caregiver to provide navigation goals
to the robot. Once the navigation goal is given to the robot
it creates a path from its current location to the destination
using A* algorithm. The global path created by the robot to
a destination is shown in Figure 7.

Fig. 7. Global path created by the Robot to a given destination

Then the robot follows along the global path and reaches
the destination. During its travel, it continuously localizes
so that the robot can understand its location with respect
to its environment and destination. If the robot encounters
an obstacle during its travel, then it stops automatically to
avoid collisions and any potential damage. Upon reaching the
destination, the robot localizes for the final time to orient itself
to the destination given. This helps the robot to get to a pose
that is comfortable for a mobility impaired person to drink
water from the robot’s arm.

B. Visual Based Assisted Drinking System
After reaching very close to a point where the robot needs

to provide drinking assistance, it activates its computer vision
based mouth tracking system. This system helps the robot to
get the exact location of the person’s mouth so that it can
adjust its arm to provide water to them. Our system is very
robust, as it detects both closed and open mouth situations.
The closed and open mouth detection by the robot can be
seen in Figure 8.

Fig. 8. Mouth detection by robot: Left - Open Mouth Right - Closed mouth

The camera of the robot helps with the detection of the
person’s mouth. This camera acts as a medium for providing
the robot with continuous feed of its environment so that it
can always keep a track of the person’s mouth. A modified
version of facial landmark detector from the DLIB library
has been used by us to get the coordinates of the mouth
from live video feed of the camera. Once the robot gets the
location of the person’s mouth, it estimates the coordinates
of the mouth. These coordinates are used by the arm of the
robot to adjust itself. The x coordinate of the mouth helps the
robot to adjust its arm horizontally and y coordinate helps it to
adjust vertically. All these adjustments are done to minimize
the distance between the arm of the robot and the person’s
mouth, so that the person can easily drink water from the arm
of the robot.

Once the arm of the robot gets close to the mobility impaired
person, the person can use the straw provided with the cup in
the arm of the robot to drink water or any other fluid. We
have also considered the fact that the person might move their
head or their base leading to change in the coordinates of the
mouth. In such a case, the robot immediately detects a change
in the coordinates of the mouth in both horizontal and vertical
directions, and repeats the process of adjusting its arm close
to the person’s mouth. This is why our robot is very dynamic
with respect to the changing positions of the person. But for
this system to work correctly, we always assume that even
though the position and orientation of the person changes, the
new coordinates are always in the vision of the camera of
the robot. Thus, this system gives us the power of hydrating
people with multiple poses and locations.



Fig. 9. Robot providing water to a person after navigation and mouth detection

IV. EVALUATIONS

We have conducted several rounds of experiments to eval-
uate our approach to solve the hydration problem. With
the several experiments conducted we demonstrate how our
solution involving the robot is reliable and appropriate for
hydration. The evaluation methods are also broken down
into two separate divisions, one which focuses on evaluation
of Navigation system and other which focuses on Visual
mouth tracking system. All the evaluations performed build
confidence on our system, and will help us to make the system
even more safer and reliable.

A. Navigation System

As the navigation system involves providing a destination
to the robot and letting it plan its path from its current location
to the destination, we have performed three different kinds of
experiments to build confidence in the navigation system. The
three experiments are as follows:

1) Experiment 1: Distance of Destinations that the robot
can reach: This experiment involves providing destinations
to the robot at different distances from its current location
and evaluating if the robot can reach those destinations. Every
destination was given to the robot about five times and in every
case we have seen that the robot reaches the given destination.
We have given destinations to our robots only up to 10m,
because the average size of an indoor room is roughly 10 by
10 meters, and we have constrained our robot to hydrate only
indoors. The Table I summarizes the experiment results.

TABLE I
EXPERIMENT1: DESTINATIONS GIVEN AT DIFFERENT DISTANCES

Destination Average Time Did robot reach
Distance to Destination destination?

1m 55 secs Yes
3m 78 secs Yes
5m 180 secs Yes
7m 350 secs Yes

10m 558 secs Yes

2) Experiment 2: Accuracy of the Robot in reaching a
destination of 1m set at different orientations from the current
location of the robot: This experiment involves providing a
destination that is roughly a meter away from the robot’s cur-
rent location and testing if the robot can reach the destination
within 100 seconds. The destinations given to the robot orient
at 0°, 30°, 60° and similar such increments of 30° from the axis
to which the robot is currently aligned. Also, the threshold for
the robot has been set to 100 seconds because we believe 100
seconds is an acceptable time for the robot, and if takes beyond
that time, then the people using the robot might get impatient.
The results of experiment 2 are summarized in Table II. From
the several rounds of experiments that we have conducted,
we have concluded that the robot succeeded in reaching the
destination of 1m in less 100 seconds every 11 out of 12
times. Thus, a success rate of 92% has been attained with our
approach.

TABLE II
EXPERIMENT2: DESTINATION OF 1M GIVEN IN DIFFERENT ORIENTATIONS

Orientation of Destination Time taken by robot to
from the robot’s axis (degrees) reach the destination (secs)

0 22
30 28
60 50
90 63
120 83
150 98
180 125
210 95
240 89
270 73
300 45
330 37

3) Experiment 3: Error rate in reaching the destination:
This experiment involves calculating the error rate of the robot
in reaching the destination given to it. For every destination
given to the robot, we have noted the distance between the
position reached by the robot after navigation and the actual
destination. This helped us to determine the accuracy of the
navigation system. The comparison between the final robot’s
position and the actual destination is depicted in Graph I.
Based on the information from the test results, we have
calculated the Error rate according to Formulae 1 and 2.

MSE =
1

n
⌃(X - Y)2 (1)

MSE = Mean Squared Error of Deviations in distances
X = Actual Destination Distance



Y = Distance reached by the robot from it’s current position
n = Total no.of experiments

Error rate =
p

MSE (2)

From our 20 trials, we have computed that the error
rate(Standard Deviation) in the robot reaching a position is
1.9%, and MSE value is 0.00037.

Fig. 10. Graph I: Comparison between Actual destination and Robot’s
position

B. Visual Based Assisted Drinking System
[h] The visual based assisted drinking system must track the

mouth of the person and provide water by adjusting the end
effector of the robot to get it close to the mouth of the person.
To build confidence in this system we have performed several
rounds of experiments by providing different locations of the
person’s mouth as an input to the system. We have defined a
threshold that the robot’s end effector must reach a position
that is 10cm away from the person’s mouth to consider it a
successful trial. With this experiment, we can conclude that our
robot had successfully reached a position close to the person’s
mouth every 9 out of 10 times.

V. CONCLUSION

Our approach to resolving the dehydration problem in the
mobility impaired though is not a fully autonomous system,
we believe that we have still made a significant contribution
in this field. With our novel approach, we have not only
decreased the caregivers’ responsibilities of delivering water
to the mobility impaired but also have developed a system
where the caregivers can deliver fluids from anywhere and
everywhere.

The field of assistive robots is very vast, and we have tried
to address a small problem in it. Though we have given a
permissible solution for assistive drinking, we believe there
is still a lot of scope for improvement. Few such potential
improvements include developing a voice-based interface for
providing the navigation goals to the robot and implementing
a system where a robot can autonomously grab a cup of water
from a location and deliver it to the intended person. When

Fig. 11. Different positions of the person given as an input to the robot

such improvements are made, the caregiver’s responsibilities
decrease further and helps mobility-impaired people to be
more independent and hydrated.
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