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Abstract

Ensuring a machine learning model’s trustworthiness is cru-
cial to prevent potential harm. One way to foster trust is
through the formal verification of the model’s adherence to
essential design requirements. However, this approach re-
lies on well-defined, application-domain-centric criteria with
which to test the model, and such specifications may be cum-
bersome to collect in practice. We propose a data-driven ap-
proach for creating specifications to evaluate a trained model.
This framework allows us to prove that the model will exhibit
safe behavior while minimizing the false-positive prediction
rate. This strategy enhances predictive accuracy and safety,
providing insight into the model’s strengths and weaknesses,
and promotes trust through a systematic approach.

Introduction
Our ability to train good models outpaces our ability to un-
derstand what exactly the model learned during training. Ar-
tificial Intelligence (AI) continues to aid in human decision-
making in increasingly critical application contexts, such
as healthcare, where erroneous decisions can inflict serious
harm (Pinsky, Dubrawski, and Clermont 2022). How can we
trust a model when we do not know for certain whether it
will cause harm that would otherwise be easily avoided by a
trustworthy human decision-maker?

Formal verification of model adherence to critical design
specifications is a growing area of research that offers one
possible solution to the problem (Sato et al. 2020). How-
ever, at times it is just as hard to determine what properties to
prove about a model as it is to develop a formalism capable
of verifying those properties. Current practice involves col-
laboration with subject matter experts (SMEs) who codify
their domain expertise into a set of requirements that must
govern the operational behavior of any model. This process
can be confusing and time-consuming, in part because it re-
quires thinking of inherently probabilistic systems in logical,
contractual terms. We propose a data-driven framework for
generating candidate specifications to use as proxy require-
ments for a trained model. We demonstrate the utility of the
framework by proving the extent to which a model’s false
positive rate can be reduced while simultaneously adhering
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to the specification. This not only lets us strike a balance be-
tween predictive performance and safety, but it also helps us
understand the strengths and weaknesses of the model.

Methodology
We describe our framework for generating candidate speci-
fications and then expand upon our experimental pipeline.

Formalism
The Tree Ensemble Accreditor (TEA) (Gisolfi 2021) (Fig-
ure 1) is a SAT-based formalism for verifying properties of
random forests. TEA encodes a random forest model and
its design specifications as Boolean formulas and then con-
verts them into Conjunctive Normal Form (CNF) to solve
for Boolean satisfiability. The solver outputs one of two pos-
sible outcomes: satisfiable (SAT) or unsatisfiable (UNSAT)
depending on whether the solver discovers a violation of the
selected specification.

Data-Driven Design Specifications
Our algorithm generates candidate design specifications to
use as inputs to TEA. They comprise input-output mappings
that prescribe the prediction the ensemble must make for a
contiguous range of inputs.

The Data-Driven Discovery of Design Specifications
(D4SPEC) algorithm trains another random forest model on
the same data. It can limit the depth of the trees in this auxil-
iary forest to reduce the risk of overfitting and the complex-
ity of design specifications. For each tree in the auxiliary en-
semble, we check leaf nodes against a minimum support and
minimum purity requirements. Paths to the leaves that pass
this check become the list of piece-wise constant threshold
rules that form the bounds on inputs for our input-output
mapping. The majority class label in the leaf becomes the
prescribed output of our input-output mapping.

Experimental Design
We sourced our data from the publicly available Breast Can-
cer Wisconsin Diagnostic dataset. This data set contains 30
continuous features and two categorical outcomes. Our ran-
dom forest classifier, from scikit-learn library, was trained
with 80%/20% train/test data split, a maximum depth of ten,
and a minimum five samples per leaf, for 100 trees. In the
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Figure 1: Tree Ensemble Accreditor

D4SPEC step, the auxiliary classifier was trained with iden-
tical parameters, except for a maximum depth of five.

We used a SPEC-ROC (Gisolfi 2021) plot to obtain the
maximum level of predictive performance out of the model
while simultaneously adhering to the design specification
of interest. SPEC-ROC is based on the Receiver Operating
Characteristic (ROC) curve, used to display the trade-off be-
tween minimizing the rate of false positives and maximizing
the rate of true positives.

Analysis

We plotted a SPEC-ROC (Figure 2) for three specifications
(Table 1) to understand the extent to which our model’s false
positive rate (FPR) can be reduced while simultaneously ad-
hering to the specifications. Based on the plot, the lowest
FPR threshold while adhering to Spec 1 is 0.336 (rounded
up to three decimal places). This means our model fails to
adhere to Spec 1 under any FPR lower than 0.336. Like-
wise, the lowest FPR thresholds for adherence to Spec 2 and
Spec 3 are 0.001 and 0.026, respectively. This implies that
if we want to enforce a select specification that maps inputs
to alarms as a design requirement, we must set the thresh-
old for positive predictions at or below these levels. For vot-
ing tree ensembles, an increase in FPR indicates that strictly
more leaf nodes are producing positive predictions. Thus, to
express this behavior, the threshold for producing an alarm
needs to be reduced.

The complexity of specifications could explain the vari-
ation in FPR thresholds. For example, Spec 2, which con-
tains the most complex rules (i.e., a combination of five fea-
ture values), has the lowest FPR threshold, whereas Spec 1,
containing the simplest rules (i.e., a combination of three
feature values), has the highest FPR threshold. This is be-
cause adhering to complex rules is more challenging. As a
result, Spec 2 has the largest safety region (any FPR greater
than the threshold). These three modalities illustrate differ-
ent possible outcomes from our experiments. The model will
satisfy Spec 2 regardless of the prediction threshold set by a
user. On the other hand, the model can only satisfy Spec 1 if
it severely limits its discriminative capabilities—this exem-
plifies what happens when a candidate specification does not
align with the learned decision logic of the model. Spec 3 is
interesting because its satisfaction or violation depends on
the setting of the predictive threshold, providing users an op-
tion to prioritize predictive performance or safety, meaning
adherence to explicit design specifications.

Attribute Spec 1 Spec 2 Spec 3
Perimeter Error <2.57
Worst Area <811.05 <552.95
Worst Perimeter <105.95
Worst Concave Points <0.12
Worst Texture <32.0
Area Error <79.83
Worst Radius <17.34
Concave Points Error >0.01 >0.01
Worst Concave Points <0.16
Symmetry Error >0.02

Table 1: The three specifications comprise different combi-
nations of features and value ranges.

Figure 2: A log-scaled ROC for our classifier along with dif-
ferent predictive thresholds for the design specifications out-
lined in Table 1.
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